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Abstract 

We show that nonlinear extensions of quantum mechanics exist in which (extensions of) quantum 
superposition and uncertainty principles hold. 0 1999 Elsevier Science B .V. All rights reserved. 
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1. Introduction 

It was shown in [ 12,131 that a strong form of the Heisenberg uncertainty principle and 
a carefully selected set of reasonable mathematical hypothesis on the algebraic structure 
of the set of observables (associativity and algebraic closure) are sufficient to force the 
choice of Projective Quantum Mechanics. This expression will denote in this work quantum 
mechanics (QM) seen as a geometry of the projective Hilbert space. This theory, a synthetical 
description of which may be found in [ 121, has the same physical content of the ordinary 
Hilbertian formulation of QM without superselection rules, but it avoids the annoying and 
conceptually misleading “up to phase” language. 

In spite of the fundamental role played by the observable algebra in the C*-algebraic 
formulation of QM, we give up in this work the algebraic structure of the observable set 
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and only take as fundamental the quantum superposition principle (QSP) and the Heisen- 
berg uncertainty principle (HUP). By abstracting from the usual geometric formulation of 
quantum mechanics we select a minimal geometric formalism allowing 
_ the formulation of QSP, 
- a complete characterization of observables as those respecting superpositions, 
_ a complete characterization of dynamical vector fields as those whose flows respect 

superpositions (isometricity), and 
- the formulation of Hup. 

As we will see a considerable part of the quantum formalism, which is necessary to repro- 
duce the algebraic structure of QM, plays no role in the description of quantum fundamental 
principles. We only need a connection (to describe superpositions), a Finslerian structure 
(to define dispersions) and a Poissonian structure (to formulate HUP). 

This work is the first step towards a geometrical foundation of nonlinear quantum me- 
chanics (NLQM). Here we just identify some geometric structures which have to be (and 
can be) saved in attempts to delinearize ordinary quantum mechanics. However, superpo- 
sition and uncertainty principles and the probabilistic content of QM are strictly linked 
to spectral theory of observables. So we have to study also a suitable spectral theory for 
nonlinear observables. This will be the argument of a forthcoming publication. Of course, 
at this stage of development of the delinearization program we do not claim a complete 
geometrical framework for nonlinear extensions of quantum mechanics. 

1. I. Why nonlinear quantum mechanics? 

Constraints make the (pure) state space of classical systems (phase spaces) strikingly 
nonlinear. But Heisenberg uncertainty inequalities forbid true quantum contraints, so the 
quantum state space appears (up to a phase) absolutely linear. Moreover, while observables 
and dynamical vector fields have no fundamental (logical) restriction in classical physics, 
they are subjected in QM to the constraint of respecting superpositions. In spite of the enor- 
mous foundational work justifying this contraposition, all the history of quantum physics is 
crossed by proposals aiming to delinearize at least some aspects of the quantum formalism. 
As usual there is a variegated gallery of motivations. De Broglie (see [ 151 and references 
therein) refusal of indeterminism is (as far as we know) the oldest and Weinberg [39] prag- 
matic request of experimentally testing linearity is perhaps the best known. Up to now no 
proposal aiming to delinearize QM at a fundamental level has been experimentally con- 
firmed. Foundational objections have been raised against any possible nonlinear extension 
of quantum mechanics. Indeed Gisin [19], Peres [31] and others have remarked that un- 
desirable consequences stem from introducing nonlinear dynamics in ordinary QM. Gisin 
shows how an EPR-like experiment combined with a simple nonlinear dynamics may be 
used to send faster-than-light signals. But it seems to us that he only shows how dangerous 
is acritically adopt the usual notion of mixed state in a nonlinear context. The necessity 
of consistently define such a notion accordingly to the given observable set has already 
been stressed in [27]. Analogously, as Weinberg has pointed out in [40], Peres proof that 
nonlinear dynamics necessarily violates the second law of thermodynamics only shows that 
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von Neumann entropy has to be accurately reformulated in a nonlinear theory. So these 
objections are interesting but by no way decisive. On the other hand, there are at least two 
sectors where nonlinearities seem to play a relevant role: QM in a gravitational background 
and nonlinear approximations to linear quantum phenomena. 

1.1.1. QM in a gravitational background 
A crucial trend of modem theoretical physics is towards a quantization of gravitational 

fields, but serious objections have been formulated against this project. So it seems premature 
to restrict all the reaserch on this program. As Mielnik has pointed out all that physics seems 
to tell us is that “[...I either the gravitation is not classical or quantum mechanics is not 
orthodox” [27]. The heretical choice to look for a nonorthodox QM has been advocated 
in [24]. A theory in which gravitation is not classical and QM is not orthodox has on the 
contrary been advocated by Popova [32]. 

1.1.2. Nonlinear approximations to linear quantum phenomena 
In classical mechanics a constraint is a surface in phase space, so it seems natural to 

think of a quantum constraint (QC) as a submanifold of the pure state space !$V-L. But since 
nonorthogonal quantum states are only partially distinguishable there is no physical way 
to implement a QC. The restriction of a dynamical vector field u to a submanifold S of 
@rH gives us a vector field US which we may think as a nonlinear approximation of v. As 
a prototipical example of this situation we take Hartree-Fock equations. The restriction of 
dynamics from (the projective of) the antisymmetric Fock space to the (projective of the) 
‘space’ of decomposable vectors [7] involves the loss of linearity but leaves us with an 
equation (the Hartree-Fock one) much more simple than the original Schrodinger equation. 
As Rowe [35] has shown Hartree-Fock dynamics may be described by a Hamiltonian 
equation on a Grassmanian manifold seen as a hypersurface of a projective Hilbert space. 
So Grassmanian manifolds and more generally coadjoint orbits of the unitary group (of 
whose the Grassmanian is an exceptionally simple example) are the first candidates to 
study nonlinearities. 

1.1.3 
It seems clever, before undertaking the study of truly nonlinear quantum systems, to 

understand better quantum dynamics on a coadjoint orbit and still before to understand better 
the geometry of ordinary (projective) QM. So in this paper our main aim will be to describe 
the interplay between the fundamental quantum principles and geometric structures used to 
describe quantum phenomena in ordinary QM. In Sections 2-5 we review these geometrical 
structures from this point of view. In Sections 6 and 7 we show how superposition principle 
and uncertainty principle can be extended to much more general contexts. 

1.2. Fundamental quantum principles and the geometry of quantum mechanics 

1.2.1. The superposition principle 
One often claims that delinearization of QM necessarily entails the lost of the QSP [35]. 

Sometimes one even reads that the QSP cannot be formulated on the pure states space $3X, 
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that is on the projective of the Hilbert space 7f [14]. All that stems from the widespread 
belief that the true nature of superpositions lies in the linear combination of wave functions. 
But as we will show, extending Cantoni’s work [9], a neat geometrical formulation of the 
QSP is possible in ‘$W by using the geodesic flow of the canonical (Riemannian) connection 
(see [12]). To be exact one must distinguish between strong superpositions of two states, 
corresponding to geodesics connecting these two states, and (ordinary) superpositions, 
corresponding to points of the smallest geodesically closed subset containing these two 
states. So the main ingredient for a neat formulation of the QSP is a geodesic flow, that we 
will introduce by means of a connection. 

1.2.2. Observables and dynamical vector$elds 
Among geodesics a main role is played by the minimal (that is parametrized with arc 

length) ones. Indeed we will show that observables are nothing more than functions re- 
specting minimal geodesics in the technically detailed meaning coded in the definition of 
geolinearity (see Definition 4.1). Moreover, we will characterize dynamical vector fields as 
those vector fields whose flows preserve geodesics and minimality (that is distance along 
geodesics). This is a second step in the comprehension of the geometry of quantum me- 
chanics: there is a distinguished way to make superpositions, the one described by minimal 
geodesics. 

1.2.3. Dispersions 
The Riemannian structure plays a double role in the description of quantum mechanics. In 

the first place the Riemannian tensor determines a connection whose geodesic flow describes 
superpositions. In the second place the Riemannian structure may be seen as a Finslerian 
one (see [30] and for a recent overview [lo]). By means of this Finslerian structure we 
introduce the notion of dispersion and characterize dynamical vector fields as those vector 
fields whose flow is isometric. 

1.2.4. Uncertainty principle 
Up to now no use has been made neither of the complex nor of the symplectic 

canonical structures of ‘$37-L (see [ 121). By introducing a weakly nondegenerate symplectic 
structure, but a Poissonian one would be sufficient, we may also describe the Heisen- 
berg uncertainty principle in purely geometrical terms. The traditional formulation of 
the HUP (Heisenberg inequalities) amounts to requiring the continuity, in any point x, 
of the symplectic tensor with respect to the Riemaniann topology on the tangent space 
in X. Besides this kinematical formulation we develop a dynamical one totally equiv- 
alent to the former: the product of the (projective) velocities of two dynamical curves 
can never be lesser than the (cosine of the) intersection angle of the two curves. At last 
we characterize strong superpositions (geodesics) with respect to ordinary superpositions 
(geodesic envelope) as those points where Anandan-Aharonov time-energy uncertainty is 
minimal. 
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Concluding we stress that we are not proposing our abstract geometrical setting as a 
way to effectively extend quantum mechanics. A serious proposal cannot be based either 
exclusively or mainly on mathematical considerations. The starting point has surely to be a 
careful study of a well-selected phenomenology. We only want to point out that a generalized 
formulation is possible. Future research will tell us which modifications or restrictions have 
to be introduced. Our main aim will be to test the formalism on nonlinear approximations 
to quantum systems and to examine its usefulness in the study of mesoscopic systems. 

1.3. Relations with previous works. 

The idea to look at superpositions as projective geodesics has been stressed in the beau- 
tiful work [9]. To synthesize the mathematical differences between our study and Cantoni’s 
one, we could say that while Cantoni based his work on the metric aspects of quantum for- 
malism, our study is mainly of a differential-geometric nature. This difference is not purely 
formal. The richer differential-geometric formalism allows us a more complete geometric 
description of quantum formalism, above all, a complete characterization of observables 
and dynamic vector fields. This is essential in a study aiming to single out a class of man- 
ifolds suitable as candidate state spaces for nonlinear quantum systems. Moreover, it is 
relevant from a conceptual point of view to characterize in a different way observables and 
dynamical vector fields. These two concepts coincide in ordinary QM by virtue of Stone’s 
theorem, but this is no longer true in open quantum systems and in many NLQM proposals. 
Furthermore, the characterization of observables as geolinear functions is a true implemen- 
tation of linearity, while the characterization of dynamical vector fields as the Killing ones 
is an implementation of the notion of isometricity. The agreement between geolinearity and 
isometricity is a peculiar characteristic of projective QM which could be no more true in a 
nonlinear theory. 

2. The geometric structure of quantum pure states space 

In this section we describe, to fix terminology and notations, the elementary properties of 
@R, that is the set of one-dimensional subspaces of a Hilbert space 3-1. We refer for details 
to [12,17]. 

Let ti be a complex Hilbert space with inner product ( 1 ) (it is trivial to verify that a 
great part of the results we shall state still hold when R is a real Hilbert space). We point 
out that we do not require neither finite dimensionality nor separability. We shall refer to 
!#‘!Y as the projective of ti and we shall use the symbol 6 to denote the one-dimensional 
subspace generated by the nonzero element 60 of a. Moreover, we define: n((p) := ~/]]a]] 
and p(p) := +. 

Definition 2.1. Let + be any normalized element of 3-t. 

- u, := 19 E $3X; (@IV> # O], 
- ‘H,J, is the Hilbert space (cp}‘, 
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- b* : 4 E U~-Qq,q/(+kp> E 7-t* where Qe : 7-i + ‘He is the canonical orthogonal 
projection, 

- &J, := NJ+,, be, T&I,). 

One proves without difficulty that c@ is a chart on @3’H and that the family of charts 

l&J?; llr E ‘FI; llllrll = l] is a holomorphic atlas on 83-1. Moreover, 

(2.1) 

is a holomorphic submersion and ker T,p = C.p for any normalized vector C+J. This stems 
immediately from the following derivative: 

D(b, 0 P)(V) = Qcp. (2.2) 

Later on we shall make use of an arbitrarily fixed positive real number K. We shall see 
later that, to have a correct correpondence with ordinary quantum mechanics, one must 
have K = A. Moreover, we shall use systematically the SUES serifsymbol to mean the local 
representative. Example: if u is a vector tangent in @ to !@‘H then v is the local representative 
of r~ with respect to the chart &. We point out that v depends on the choice of the normalized 
representative 60 E @. 

Definition 2.2. For any $ E ‘@‘H and v, w E T$S$3IFt 

&j(V, W) := 2K%(VlW), 

where v := T+bq (II), w := TGbp (w) and q E @ is any normalized vector. 

(2.3) 

It is trivial to prove that (2.3) is well-formulated, i.e. that it does not depend on the choice 
of the representative rp of $. Moreover, g is a strongly nondegenerate (see [25]) Riemannian 
tensor: it is not difficult to verify that g is smooth and that, by virtue of the Riesz theorem, 
the map 

g; : v E T$$?+g&, -) E T;“7i (2.4) 

is a linear continuous isomorphism. As a holomorphic manifold ‘$3’H is naturally endowed 
with a complex structure J. This structure is strictly linked with the Riemannian one: 

Proposition 2.1. (!$V-i, g, J) is a strongly nondegenerate Kiihlerian manifold. 

We refer the reader for a proof of this well-known fact to [26, Proposition 5.3.11. 
We close the section by collecting some relevant geometrical properties of S&Y. 
One proves easily that the map p : 7-l \ {0} --+ @'FL is a Kahlerian submersion. That is: 

for any nonzero (p E 7-1 the restriction of the map T,p to the orthogonal of its kernel is a 
@-linear isometry. 

As a Kahlerian manifold @N has a symplectic structure. It is easy to see that the symplectic 
tensor satisfies the following relation: 

W$(V$, W$,) = 2K!3(VIW). (2.5) 
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3. The geodesic structure 

3.1. The Riemannian connection 

The (strongly nondegenerate) Riemannian tensor g of ?3’E generates a vector-bundle 
isomorphism gb (with inverse g8) by means of which we may transport the canonical 
symplectic structure of T*@‘H on Tp3-I. Let us introduce the function 

K : v~ E T@37-I-g&, v$ E Iw. (3.1) 

The opposite -UK of the Hamiltonian vector field generated by K is called the canonical 
spray of !$‘,JI. For any chart &,, there is one and only one smooth map 

r : up + L&(‘H(o, ‘FI,) (3.2) 

such that 

- VK(rl, v> = (rl, T,(v, VI>, (3.3) 

where VK is the local representative of the vector field UK with respect to the chart &,. The 
map r is called canonical bilinear symmetrical map determined by the spray -UK. There 
is a general relation linking a Riemannian tensor g with the canonical map r associated 
with it [25]: 

- r,(v, w) = ~~~(Cl(~)(v)(-~ W) + DM?)(W)(V,-) - Mr)(-)(v, w)). 

By means of this relation one proves that: 

Proposition 3.1. The bilinear symmetric map associated to the tensor g on Q’H is (in the 
chart eu;p) 

r (v w) .= (rlv)w + (VlWV 
7 ’ 1 + llvl12 . 

(3.4) 

A proof may be found in [ 171. 

3.2. The geodesicjow 

We shall say that the vector v E T+pN is 2K-normalized if g+(v, v) = 1. We point out 
that if v is 2K-normalized then its local representative v is normalized. 

Proposition 3.2. Let v E T+@E be any 2K-normalized vector. The geodesic tangent in 3 
to v is 

c+,,(t) = p(pcost +vsint). 

The proof is a trivial application of the geodesic equation. 

(3.5) 
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If @, i are distinct points of Qp’Ft we shall use the symbol ~3 to denote the projective of 
the two-dimensional subspace of ‘FI generated by q, x (nonzero representatives of @ and i, 
respectively). We shall say that @ and i are antipodal if 40 I x for any lp E 4, x E 2. 

Remark 3.1. A point 2 of p7-f belongs to c+, if and only if i E 5 and for some 
normalized vector p E 6 (and then for all) one has 

(vlx) E R 

(vlx) . 
(3.6) 

Remark 3.2. For any pair of distinct non-antipodal points i+?, i in q3-1 there is one and 
only one (up to reparametrization) geodesic crossing these two points. The equation of this 
geodesic is (up to reparametrization) 

c~i (t) := p((p cos t + n[&(i)] sin t), 

where (p E 4 is any normalized vector. 

(3.7) 

3.3. The exponential map and the injectivity radius 

For any 6 E q’,V and any (not necessarily 2/c-normalized) vector v in T~p7-l let civ be 
the only geodesic starting in @ with velocity v. We know from the Section 3.2 that 

G+b(t) = P(~cos(llVllt) + n(v) sin(]lvl]t)). (3.8) 

Hence the exponential map has the following form 

Exp+v = P(V cos llvll + n(v) sin Ilvll>. (3.9) 

Definition 3.1. Let (M, g) be any (strongly nondegenerate) Riemannian manifold. If x is 
any point of M, the injectivity radius of x (in symbols L~) is the supremum of all positive 
real numbers p such that Exp, B, (0,) is injective, where B, (0,) is the closed disc of radius 
p and center 0,. 

With standard arguments one shows: 

Proposition 3.3. The injectivity radius of any element @ of @ti is 16 = KT. 

Hence we have a neat interpretation of K as (up to a trivial normalization) injectivity 
radius of any point. This interpretation has to be seen in contraposition with the usual 
one looking at K as a measure of the holomorphic sectional curvature. Indeed one shows 
[22] that the holomorphic sectional curvature of @‘H is constant and that its value is 2/~. 

We think of this interpretation as being mathematically correct but physically misleading. 
Especially because the classical limit ~-4 as no clear geometrical meaning. We point out 
that this limit is classical because, as we shall recall at the end of Section 5, to have an exact 
correspondence between projective QM and ordinary QM one is forced to take K = h. We 
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believe that K has to be thought as injectivity radius of pure states. Since injectivity radius 
measures total (physical) distinguishability (see the end of this section) we may think ofthe 
limit ~-4 as being an (infinite) extension of total distinguishability, 

3.4. The metric structure 

Knowing the exponential map it is not difficult to derive the form of the metric structure: 

Proposition 3.4. The metric structure of @l-l has the following form: for any 4, i E !@l-l 

d(@, i) = 6arccos I(cplx)l, (3.10) 

where v E 6, x E i is any pair of normalized representatives. 

We point out that the proof of this proposition is easy but not immediate. Indeed since 
Hopf-Rinow theorem does not hold on infinite-dimensional manifolds one has to prove by 
direct inspection that for any pair of points there is a minimal geodesic whose length is 
minimal among curves connecting these two points. 

Exploiting the geodesic and the metric structures we see that @2’Ft belongs to a relevant 
class of manifolds: 

Definition 3.2. A strongly nondegenerate Riemannian manifold (M, g) is an SC/ -manifold 
(for some positive real number Z) if 
_ any geodesic is a periodic orbit of period I, 
- any geodesic is simple (injective) when restricted to [0,1[. 

We recall that SC1 is a particular class of manifolds all of whose geodesics are closed. 
We refer the reader to [6] for a description of the relations linking this class to other classes 
of manifolds with closed geodesics. 

Indeed one has the following result. 

Proposition 3.5. 97-f is an SC,&-manifold. 

We saw in Section 3.3 how K may be thought (up to a constant multiplicative factor) 
as injectivity radius, now we see how Ji? may be thought (up to a constant multiplicative 
factor) as geodesic length. Unfortunately a clear physical interpretation of geodesic lengths 
is still lacking. 

3.5. Antipodality 

In a previous section we introduced the notion of antipodality in @‘l-l by making reference 
to the underlying linear structure. In this section we shall generalize this notion to arbitrary 
strongly nondegenerate Riemannian manifolds and we shall explain its physical meaning. 
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Definition 3.3. The cut locus C, of any point x E M is the complement of the greatest 
open set MX of M such that any point of MX might be connected to x by means of one and 
only one minimal geodesic. We say that a pair of points x, y E M is antipodal if x E C,. 

Obviously antipodality is a symmetric relation. From our study of the geodesic structure 
of ‘$7-1 we know that Definition 3.3 corresponds (in ‘@B’FI) to our previous definition. 

Now we shall explain the physical importance of antipodality. If $, i is any pair of points 
of Q7-f our ability to distinguish them with a single measurement is given by the probability 
(see [S]): 

P,,=:(l+~~). (3.11) 

We observe that pmax is minimum when q~ = @ and maximum (actually one) when (D I +. 
So a pair of states is totally distinguishable if and only if they are antipodal. 

4. The geodesic characterization of observables 

In this section we will provide a geometric characterization of observables truly imple- 
menting the notion of linearity. The idea is to select the linear observables by means of their 
behavior on geodesics. Remark that geodesics reproduce on ‘$‘Ft the lines of ‘FI. 

Definition 4.1. A smooth function f : W-l + R is geolinear if and only if for any @ E QD’FI 
and &-normalized vector u E T~37-l one has 

f(%u(t)) = f(6) + (sin t cos t)def(v) + (sin2 t)Hess+f(u). (4.1) 

Here HessGf(v) = iHessGf(v, V) is the Hessian off in $ evaluated on the pair (u, v). 
We refer the reader for an intrinsic definition of the Hessian to [29]. We point out that 
Definition 4.1 strongly depends on the specific nature of p’,V: 
- sin t, cos t functions are specific to !&Q-geodesics, 
_ the lack of third or higher degree terms is expected to be specific to p’7-f. 

If A : IFI + ti is any self-adjoint operator, the map 

(A) : 6 E B’FI-+(v4Mo) E R (4.2) 

where q E $ is any normalized representative, is clearly geolinear. But a more strong result 
holds. Indeed we are now in a position to state the main result of this section: 

Proposition 4.1. A smooth map f : $Vi -+ R is geolinear if and only if there is a 
self-adjoint operator A E C(7-l) such that f = (A). 

In the proof of this result we shall use the following trivial remark: 

Remark 4.1. Let A : ‘7-L -+ ‘l-l be an R-linear operator. (A) is well defined on @X if and 
only if A is C-linear. 
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Proof of Proposition 4.1. Necessity is easy to prove, so we restrict ourselves to the verifi- 
cation of sufficiency. We divide the proof in two parts to make the proposition clearer. 

Sufficiency (real Hilbert space). Let f : ‘p7-I -+ R be a geolinear function, + any element 
of ‘$3H and ~0 be a normalized representative of $. We shall use the symbol f to denote the 
local form off with respect to the chart &,. The map D*f(O) : XFI, x ‘HP -+ R is continuous, 
[W-linear and symmetric, so for a known property of Hilbert spaces there is a unique [W-linear 
continuous operator B : I& -+ Ii, such that 

D2f(0)(v, w) = 2(vlBw). (4.3) 

Moreover, from Riesz’ theorem we know that there is a unique vector [ E 7-1, such that 

Df(O)(v) = 2(C Iv). (4.4) 

Now we define A : If + ‘Ii as the unique H-linear operator such that 

&J := f($)bo + 5, (4Sa) 

An := (Cln)60 + [f(G)1 + 0-1, (4.5b) 

where n is any element of ‘&. It is not difficult to verify that A is a continuous self-adjoint 
operator. To complete the proof one may now limit oneself to the easy verification of the 
three relations 

(A)($) := f(G), (4.6a) 

d$(A) := d+ f, (4.6b) 

HessG(A) := Hess+ f. (4.6~) 

Sufkiency (complex Hilbert space). Let ?-t be a complex Hilbert space and f : ‘f$W + R 
a geolinear function. By restricting the scalar field and taking as scalar product %( 1 ) we 
obtain from Z a real Hilbert space we shall denote with the symbol Y&r. The following 
diagram is obviously commutative (functions p, n, t are canonical projections). 

(4.7) 

One easily sees that f o n is geolinear on vast. So we know from the first part of the 
proof that there is a unique [W-linear self-adjoint operator A such that f on = (A)%, where 

(Ah : r(v) E W%-+W(PI&) E R (4.8) 

(4p is any normalized representative of 3). Since f is well defined on ‘Js?f and f = (A)a 

(on $V&t) also (A):J~ is well defined on @2’FI. From the remark we deduce that A is @-linear. 
Last from C-linearity and real self-adjointness we deduce complex self-adjointness. 0 
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5. The metric characterization of dynamics 

We explained in Section 1 why we need to characterize in an independent way observables 
and dynamical vector fields, even if in ordinary QM these two concepts agree (Stone’s 
theorem). Now we shall develop a complete characterization of dynamics starting from the 
Kahlerian one given in [ 1 l] and improved in [ 121: 

Proposition 5.1. A smooth map f : @31H + R is Kahlerian if and only there is a continuous 
linear operator A : ‘FL + Ii such that f = (A). 

Here Kahlerian means that the flow of the Hamiltonian vector field nf preserves all the 
Kahlerian structure. 

In this section we will show how, with a very simple remark, it is possible to improve the 
proposition deleting any reference to either the complex or the symplectic structure. Indeed 
we shall prove that dynamical vector fields are nothing more than the Killing ones, that is 
those whose flow is isometric. 

We fix the following terminology: 
- a semi-unitary operator on complex Hilbert space FL is a linear unitary or antiunitary 

operator; 
- an antipodal bijection on p?-l is a bijection fi : PI-l + @‘Fl such that both fi and its 

inverse preserve antipodality; n 
- a homeomorphism U : $7i -+ 9% admits a conservative distance cz if for any pair of 

points @, $ whose distance is a! the distance between I!?(@), I!?($) is o (a is any positive 
real number); 

- a diffeomorphism of @‘7f is isometric if it preserves the Riemannian structure; 
- a diffeomorphism of SJS33-1 is Kahlerian if it preserves the Riemannian and the symplectic 

structure. 
In this section a fundamental role is played by Wigner’s theorem in the strong formulation 

due to Uhlhorn (see [37, Theorem 5.11 ) and Mielnik (see [28, Theorem 11): 

Theorem 5.1 (Wigner-Uhlhom-Mielnik). Let ?-l be a Hilbert space and let the map fi : 
@B’FI + ‘$‘iY be any bijection. Zf dim ‘7-l > 3, the following assertions are equivalent: 
(a) 6 is an antipodal diffeomorphism, 
(b) l? is a diffeomorphism admitting a conservative distance, 
(c) fi is an isometric diffeomorphism, 
(d) 6 is a bijection preserving the transition probability, 
(e) there is a semi-unitary operator U such that fi = @U. 

Zf dim 3-1 < 3 then points (c), (d) and (e) are still equivalent but there are antipodality- 
preserving diffeomorphisms not implemented by any semi-unitary operator. 

The theorem of Wigner-Uhlhorn-Mielnik provides us with a complete characterization 
of semi-unitary operators in terms of the corresponding projective functions. A similar 
characterization for unitary operators is easy to find: 
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Corollary 5.1. Let l-l be a Hilbert space and U : $23-1 -+ @‘H any bijection. Ifdim l-i > 3 
the following assertions are equivalent: 
(a) fi is an antipodal biholomorphism, 
(b) fi is a biholomorphism admitting a conservative distance, 
(c) fi is a Kahlerian diffeomorphism, 
(d) fi is a bijection preserving orientation and transition probabilities, 
(e) there is a unitary operator U such that U = QlJ. 
Zf dim 3-1 < 3 then points (c), (d) and (e) are still equivalent. 

It is well known that the notion of orientation is not well defined on generic infinite- 
dimensional manifolds. So we specify that we refer to the notion of orientation on the pure 
states space of a C*-algebra introduced by Alfsen, Hanche-Olsen and Shultz [36]. 

Let P be the group of Kahlerian diffeomorhism of !&Y. This group may be easily identified 
(and will be identified) with the projective group, that is the quotient of the unitary group 
U with respect to its center. P endowed with the topology induced by the family of maps 

PqLl+b : WI E P”I(d~llr)l E R (5.1) 

(with 60, $ generic normalized vectors) is a topological group. The following is a standard 
result (see [5, Theorem 3.21 and [38]): 

Lemma 5.1. Zf u : R + P is a l-parameter continuous group then there is a l-parameter 
continuous group U : R + U such that u(t) = QU(t)for any t. 

A Killing vector field is a complete vector field whose flow preserves the Riemannian 
structure. We may now state the main result of this section: 

Proposition 5.2. A vector field v on @‘l-t is Killing if and only if there is an operator 
H E .C(W),Y, such that v = V(H). 

Here we use the standard convention to denote with the symbol vf the Hamiltonian vector 
field generated by the Hamiltonian f (in this case f = (H)). 

Proof of Proposition 5.2. Let v be a Killing vector field on Q31H. Since its flow F is complete 
the maps Ft are globally defined isometric diffeomorphisms. From Wigner theorem we 
deduce the existence of a semi-unitary operator Ur such that Fr := @Ur. By virtue of the 
relation 

Ft = K/2 0 K/2 (5.2) 

this operator is actually unitary. Consequently U is a projective representation. 
Since F is continuous the map 

t E ~-+P(UN) E @‘Ft (5.3) 

is continuous. From the definition of the topology of P we deduce the continuity of the 
map t E R-+plJt E P. Now we know that U is a strongly continuous unitary representation 
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of R and then by virtue of Stone’s theorem that there exists a (not necessarily bounded) 
self-adjoint operator H E ~Cc(Il-l),, such that 

F(t, 3) = P exp 
(. > 

-%H . (5.4) 
K 

Since the left-hand member of this equation is smooth, this is also true for the right-hand 
member. By exploiting the continuity of the time derivative (in 0) of the right-hand member 
of Eq. (5.4) it is not difficult to show that H is a bounded operator. Given this remark by 
differentiating Eq. (5.4) we obtain the desired relation n = U(H). 0 

Remark 5.1. We point out that Eq. (5.4) tells us that the flow of the Killing vector field 
U(H) is the (projectivization of) the solution of the Schrodinger equation with Hamiltonian 
H if and only if K = h. So while any positive value of K is acceptable from an abstract 
point of view, only A gives us a theory well corresponding to ordinary QM. 

6. The superposition principle 

6.1. An informal description 

Superposing plays a relevant role among techniques of state generation because it is 
the only one always preserved by quantum dynamics and observations. The superposition 
principle is nothing more than a nontriviality assumption: any pair of (different) pure states 
p, CT has at least a nontrivial superposition u (that is u # p, u). As Wick et al. have shown 
in [41] the QSP has a restricted validity: not any pair of pure states may be superposed. A 
maximal set of superposable states is called superselection sector. 

6.2. A formal description 

In the abstract framework of quantum logic axiomatics any physical system is described 
by means of a set of properties L (logic) and a set of pure states P. Usually L is an orthoposet 
set and P is a set of probability measures on L, moreover there is a duality allowing us to 
speak about values of an element p E P on an element a E L. In such an abstract setting 
two main notions of superposition have been introduced. Gudder [20] says: a state u E P 
is a superposition of two states p, CT E P if and only if for any a E L 

p(a) = a(a) = 0 ==+ u(a) = 0. (6.1) 

Guz’ alternative definition [21] may be obtained by simply substituting Eq. (6.1) with 

p(a) = a(a) = 1 ==+ u(a) = 1. (6.2) 

Physically Guz’ definition tell us that u is a superposition of p, CJ only when any property 
true in p and cr is also true in u. A similar interpretation holds for Gudder’s definition. 
It is relevant from a geometrical point of view to remark that Gudder’s definition may be 
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equivalently formulated, in our setting of ordinary QM in a given superselection sector, using 
positive operators rather than elements of the logic (orthogonal projectors). Similarly Guz’ 
definition may be equivalently formulated taking effects rather than elements of the logic. 
Having a notion of superposition we may state the QSP. Among the various formulations 
which have been proposed (see [16,20,23,33,21]) we choose Guz [21] and Pulmannova [33] 
for its physical and geometrical clearness: the QSP holds for a pair (L, P) if and only if 
any pair of (distinct) pure states has at least a nontrivial superposition. 

6.3. The geometric description 

It is a well-known fact that for any pair of (distinct) points 4, i of $Vf the set of all su- 
perpositions of these two states is nothing more than the projective of the two-dimensional 
subspace of ‘?L generated by any pair of representatives of @, i. From a metric point of 
view this is the smallest geodesically closed set generated by 6 and i. This suggests 
to look at geodesics as a way to implement superpositions in a more general geometric 
setting. 

In a very abstract way we may think of a manifold M with a distinguished set of geodesics 
as being the (pure) state space of some physical system in a generalized quantum theory. 
A typical situation is the following. The manifold M is endowed with a connection whose 
(projection on M of) integral curves we call geodesics. There is some way to select a class 
of geodesics we call minimal. For instance if F is a Riemannian connection, we select 
geodesics parametrized by arc length. More generally, on a Finslerian manifold we may 
take as minimal geodesics those with normalized velocity. 

In this abstract setting we state: 

Definition 6.1. For any x, y E M: any point of the smallest geodesically closed set con- 
taining x and y (resp. a geodesic connecting x and y) is a (ordinary) superposition (resp. 
strong superposition) of x and y. 

So the geometrical formulation of QM gives us not only a way to describe superpositions 
but also a very natural two-level classification. Obviously enough we are left with the 
problem to identify a set of physical criterions allowing us to distinguish among these two 
types of superposition. 

Since geodesics implement superpositions it is natural to think of the lack of geodesics 
as a way to implement superselection rules: 

Definition 6.2. A superselection sector (in M) is a subset C of M such that for any x E C 
and y 6 C there is no geodesic connecting x and y. We say that M satisjies the QSP if it 
has only one superselection sector. 

Remark 6.1. In projective QM antipodality is strictly linked with geodesic degeneration, 
indeed a pair of points is antipodal if and only if there is a (U( 1)-parametrized) family of 
geodesics connecting these two points. In geometric QM (with superselection rules) there 
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is also a second type of antipodality, indeed a pair of points geodesically disconnected 
is always antipodal. Since antipodality is a mathematical implementation of total (phys- 
ical) distinguishability we have: there is a distinguished way to superpose states (strong 
superpositions) only when the states are not totally distinguishable. 

6.4. Observables 

In projective QM observables are nothing more than geolinear functions. So it is natural 
to think of geolinearity as a way to describe observables in our abstract setting of QM on an 
arbitrary manifold M. Unfortunately, geolinearity strongly depends on sin t , cos t functions, 
which are a peculiarity of the geodesic structure of @‘H. We remark that if f : s$Yl-l + iw is 
geolinear, then the knowledge off in a neighborhood of any (fixed) point @ E %‘H allows 
us to know that the value off is any point of ‘$37-l. This property is fundamental but too weak 
to uniquely characterize observables. Moreover, this property is not sufficient to establish 
a linkage between superpositions and observables of the type described by Eqs. (6.1) and 
(6.2). A second property of any geolinear function f is the following: the value off in any 
point i of any geodesic connecting two (distinct) points @, 6 is a linear combinations of 
f ($), f (4) de f (v) (for some vector v E T~q7-l) or equivalently dg f (w) (for some vector 
w E T$ S$‘FI). We remark that if we take these two properties as a definition of observable in 
the abstract setting of (generalized) QM on an arbitrary manifold M then positive (valued) 
observables always satisfy condition (6.1). So our definition is enough rich to ensure the 
usual interplay between positive observables and superpositions but we have no proof that 
on $YY this definition uniquely characterizes geolinear functions. 

6.5. Dynamics 

Let fi : @‘II -+ fj37-l be any superposition preserving bijection, i.e. such that for any pair 
of points 3, 6 there are points c$, I/? such that 

fi&8 = f&P. (6.3) 

As remarked by Gisin [ 181 the fundamental theorem of projective geometry tell us that there 
exists a semi-linear operator U : l-l -+ 7-l such that fi = !@U. Moreover, Gisin has shown 
that if fi is continuous, then U is either linear or antilinear. So a superposition preserving 
homeomorphism is the projectivization of a continuous linear (or antilinear) automorphism 
of3-I. 

Now let fi be a strong-superposition preserving bijection, that is a map sending any point 
of a geodesic connecting $, 4 in a point of a (same) geodesic connecting i?$, i’$ (we point 
out that in this section we think of geodesics as set of points, that is we identify geodesics 
coinciding up to reparametrization). Since fi is bijective the l-parameter family of geodesics 
connecting a pair of (generic) antipodal points @, 4 is mapped onto the l-parameter family 
of geodesics connecting the points fi@, l?$. Only antipodal points may be connected by 
different geodesics, so fi preserves antipodality. Hence fi is theprojectivization of a unitary 
(or antiunitary) operator 
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Now we recall that geometrically an angle is a pair of vectors tangent in a same point 
and that on @p’H any two vectors V, w tangent in the same point @ define two angles 

L&j, w+> := arccosg~(u~, w+>, 

&@, we) := arccosW~(V~, W$). 

It is clear from our previous analysis that any strong-superposition preserving bijection 
always preserves angles L. Moreover, one sees easily that such a bijection preserves angles 
d if and only if it is the projectivization of a unitary operator. Given two geodesics c and e 
connecting a pair of antipodal points @, i, we may take the vectors tangent to these geodesics 
in any of these two antipodal points as a way to define an angle between geodesics. So we 
shall say angle between a pair of geodesics (connecting a pair of antipodal points) meaning 
angle between these vectors. If one takes angle L, the definition does not depend on the 
chosen antipodal point, while the d has opposite values in @ and i. Hence we may state: 
a strong-superposition preserving bijection preserves d-angles between geodesics if and 
only if it is the projectivization of a unitary operator: 

7. The uncertainty principle 

A widespread statement is that quantum mechanics sets severe limits to our ability to 
simultaneously measure physical quantities. This statement is usually supported by means 
of this phenomenological principle: there is no simultaneous measurement of the quantities 
q, p in which the product of the errors is less than h/2. As a formalization of this principle 
one usually takes the inequality: 

AqAp > ;. (7.1) 

But it has correctly been stressed that this inequality is not equivalent to the above phe- 
nomenological principle. So it is fundamental to point out that speaking about uncertainty 
relations we are referring to Eq. (7.1) (with the analogous relations for the other phase space 
coordinates). 

7. I. Uncertainty relations among observables 

Given the Hilbertian formulation of QM the uncertainty relations among observables 
become a simple mathematical theorem. Indeed Robertson (see [34]) has proved that: 

Heisenberg inequality. For any A, B E L(‘H),, and p E ‘l-t 

(7.2) 

where 

A,A := II& - (vIAv)6oll 

is the dispersion of the observable A in the state cp. 

(7.3) 
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The translation of this inequality in the language of differential geometry on qp3-I has 
been performed in [ 12,131. We recall the main points. For any pair of smooth functions 
f, h : $Vi + R let be 

If, h](G) := W&f(G% %($))9 (7.4a) 

((A h))(G) := g&(& Uh(@))> (7.4b) 

where uf denotes the Hamiltonian vector field generated by f. Then one proves easily 
that: 

Proposition 7.1. For any A, B E f&‘-l),, 

- {(A), (B)) = ($[A, Bl), 
- (((A)(B))) = ;(A 0 B) - ;LWBL 
where A o B is the Jordan product of A and B. 

So the Poissonian product (_ , _ ) implements at a geometric level the Lie algebra structure 
of the observables and the Riemannian product ((_, _ )) (pointwisely deformed) implements 
the Jordan algebra structure. One easily sees that 

$A = ;(((A)+ (A)$) = ;Il@II;. (7.5) 

Thus we may rewrite Eq. (7.2) as 

II(A)(@), (&(@))I i IIv(A)(~)llgllv(E)(~)llg, 

or equivalently 

(7.6) 

b&‘(A)(6% ~(B,@>)I 5 1121(A)(~)llgllu(B)(~)Ilg. (7.7) 

Since any element of T~@ti may be written in the form ‘u(A) (@), for some operator A, we 
may equivalently rewrite (7.7) in the form 

lb$II 51. (7.8) 

So up to renormalization Heisenberg inequality is nothing more than the pointwise conti- 
nuity of the simplectic form with respect to the the topology induced on the tangent space by 
the Finslerian (Riemannian) structure. In a more general context we could say that Heisen- 
berg inequality corresponds to asking for continuity of the Poissonian structure with respect 
to the Finslerian topology in the detailed meaning coded in Eq. (7.6). 

Up to now we were speaking about ordinary (projective) QM. Now we are ready to 
delinearize and to introduce the uncertainty principle in a general geometric setting. 

Definition 7.1. Let M be a manifold endowed with a Poissonian structure (_,_ } and a 
Finslerian structure II _ II. We say that (M, (_ , _ ), II _ 11) satisjes the Uncertainty Principle 
if the Poissonian structure is pointwisely continuous with respect to the Finslerian topology: 
there is some a E [w+ such that for any pair of smooth functions f, h : M + [w 

ILL hI( i aII~~(~)IIIl~~(~)II~ 

foanyx EM. 

(7.9) 
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Indeed if (7.9) is satisfied and we let 

A2.f := +&)/I (7.10) 

then 

;lM h](x)1 i &f&h. (7.11) 

On any manifold satisfying the uncertainty principle, and then on !$‘,Y too, the uncertainty 
inequality (7.11) holds for any pair of smooth functions and not only for the geolinear ones. 
So Eq. (7.11) has a deeper meaning than Eq. (7.6). We point out that (7.11) shows that 
Heisenberg inequality does not depend in any way on the linearity of observables. 

Remark 7.1. Let M be a manifold endowed with a strongly nondegenerate symplectic 
tensor w and a strongly nondegenerate Riemannian tensor g, such that (M, w, g) satisfies the 
uncertainty principle. For any point x the bilinear form o, is antisymmetric, nondegenerate 
and continuous with respect to the Riemannian topology on tangent space TX M. A known 
theorem (see [ 1, Theorem 3.1.191) tells us that there exist a complex structure JX and a real 
inner product Yt_ I_) on TX M such that 

(iJ]?_u) := !X(V]W) - J,W,(V, w) (7.12) 

is a Hermitian nondegenerate inner product. So in this restricted context it is correct to 
state that to satisfy the uncertainty principle we are compelled to introduce (pointwisely) a 
complex structure. But we remark that, as far as we are concerned with ordinary formulation 
of the uncertainty principle, we are not compelled to ask either for smoothness of J or for 
a KUerian linkage between w and g . 

7.2. The dynamical formulation of the uncertainty principle 

Heisenberg inequality is clearly a constraint on the values one may obtain by measuring 
a pair of observables. We shall show in this section that we may also see it as a constraint 
on the relative portrait of dynamical flows. Let A, B be continuous self-adjoint operators 
and @ any element of @X. If c, e are smooth curves on @‘FI such that c(t) = e(t) = $, 
k(t) = U(A)[C(t)] and i(t) = v(B)[e(t)], then we may rewrite Eq. (7.7) as 

lqAi’W> a)>1 5 Il4t>llgIl~(t>llg, 

which is equivalent to 

(7.13) 

I cm I, 4t>)l 5 Ilwllgll4t)ll~. (7.14) 

Since Ijk(t)llg (resp. Ilk( is the velocity of c (resp. of e) in t one has the following 
geometric interpretation of (7.14): theproduct of the velocities of c and e in their intersection 
points is always greater than the cosine of the intersection angle of the two curves. In a more 
suggestive way we could equivalently say that in order that c and e were both slow in @ it 
is necessary that their intersection angle is great. So in quantum mechanics the dynamical 
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portrait of a Hamiltonian vector Jield constrains the form of the jlow of any Hamiltonian 
vectorjeld generated by an observable not commuting with the on’ginal one. 

7.3. Aharonov-Anandan time-energy uncertainty inequality 

Let h : p33-1 + R be any smooth function and c any integral curve of the Hamiltonian 
vector field Vh. If ij := c(to), i := c(tl), with tl > to, then 

fl 

s 
dtgc(,)(W, W)“* L d(& i). (7.15) 

to 

Since i‘(t) = vh[C(t)] and 

we have 

t1 s dt&(t)h L 

to 

Let 

11 

(Ac(t)h) := & s dtAc& 

At := tl - to. 

If 

(At) .= a(n/2) 
d(& i) 

At 

(7.16) 

(7.17) 

(7.18a) 

(7.18b) 

(7.19) 

then (7.17) becomes 

@c(t,h)(W 1 ;K. (7.20) 

In ordinary QM K = A so the right member of (7.20) becomes h/4. Hence (7.20) is the 
time-energy inequality derived by Anandan in [3] as a generalization of a previous result 
[2]. Mathematically (7.20) is clear but the interpretation of (At) as a time incertitude seems 
to us a little disputable. So we adopt a different viewpoint. Equivalently Eq. (7.17) may be 
rewritten as 

(Ac(t)h) > K 
(v) - 2’ 

(7.21) 

where 

CA i) 
(v) := 7 (7.22) 
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We give to (7.21) the following interpretation: a physical system whose dynamics is de- 
scribed by the (nonlinear) Hamiltonian h may be energetically well collimated (on the 
average) only if its (mean) projective velocity is small. 

It is not difficult to see that (7.21) is an equality only when c is a geodesic. This allows us 
to understand better the differences among strong and ordinary superpositions: dynamics 
along strong superpositions has the highest degree of (mean) energetic collimation for a 
given (mean) projective velocity. 

8. Conclusions 

As far as we are concerned with the mathematical formalism of quantum mechanics at 
an abstract level, we are not compelled to restrict ourselves to projective Hilbert spaces. 
We only need a manifold endowed with a Finslerian structure, a connection and a Poisso- 
nian structure. The geodesical structure describes superpositions and the continuity of the 
Poissonian structure gives HUI? 

Of course, such a general schema takes into account just of some fundamental require- 
ments for a quantum theory and there are many open questions. Therefore, at this stage of 
development of our program we do not think that the above simple schema, as it is, could 
be a possible framework for the geometrical description of nonlinear quantum mechanics. 
While it is clear that the HUP requires continuity of the Poissonian product with respect to 
the Finslerian topology, no much is known about the relations between this connection and 
the Finslerian (resp. Poissonian) structure. That is we do not know which physical princi- 
ples forbid us to fix in an arbitrary way the relations between these structures. In [ 12,131, 
given a manifold endowed with a strongly nondegenerate Riemannian tensor and a strongly 
nondegenerate symplectic tensor, a mix of physical and mathematical motivations was sin- 
gled out to reconstruct the projective structure of quantum mechanics. Giving up to these 
mathematical constraints a large plethora of nonlinear extensions of QM becomes possible. 
These extensions are too many and too weak to be used in a phenomenological analysis. 
Further inspection and the introduction of some other fundamental principles is necessary 
to select ‘a’ nonlinear extension of QM. In particular, QSP and HUP are stricly connected 
with spectral theory of observables. So we have to select, on the basis of phenomenological 
requirements, some nonlinear observables admitting a suitable spectral theory. In a forth- 
coming publication we shall explain how further restriction may be obtained asking for a 
spectral theory and a probabilistic interpretation of nonlinear observables. 

Note added in proof 

After submitting this article an interesting paper by Ashtekar and Schilling [4] has ap- 
peared. By virtue of the relevance of this work we think as necessary to give a brief con- 
frontation. Ashtekar and Schilling take as an abstract model for a nonlinear quantum system 
a K;ihler manifold M and as observables those functions f : A4 + R whose flow is Killing. 
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Given these hypotheses they obtain a theorem (Theorem III. 1) stating that under reasonable 
conditions on the observable set the manifold necessarily has constant holomorphic sec- 
tional curvature. So under standard topological hypothesis, at least in the finite dimensional 
case, the Kahler manifold necessarily is the projective of a Hilbert space. This work is 
much in the spirit of [ 121 (see Proposition 4.6) where, starting from a most general class of 
manifolds and using a different set of hypothesis, a similar result was obtained. The spirit 
of the present work is strongly different. We look for the most abstract model consistently 
admitting a formulation of two of the most fundamental aspects of QM: the superposition 
principle and the Heisenberg uncertainty principle. So doing we obtain that there is no need 
to restrict ourselves to the class of K5hler manifolds. Furthermore, we take as separate no- 
tions those of observable and dynamical vector field obtaining different characterizations. 
We remark that stating that Killing vector fields are nothing more than ordinary quantum 
dynamical vector fields is much more than saying that observables are those functions whose 
Hamiltonian vector field is Killing. Indeed we are also stating the nonobvious fact that any 
Killing vector field is also Hamiltonian. 
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